Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces

and Applied Analysis 3 for some natural number n0. Moreover, if the second alternative holds, then i the sequence {Jnx} is convergent to a fixed point y∗ of J ; ii y∗ is the unique fixed point of J in the set Y : {y ∈ X | d J0x, y < ∞} and d y, y∗ ≤ 1/ 1 − L d y, Jy , for all , x, y ∈ Y . Following 30, 31 , we recall some basic facts concerning multi-normed spaces and some preliminary results. ...

متن کامل

Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces

and Applied Analysis 3 vector spaces X and Y is a solution of 1.5 if and only if there exists a unique function C : X × X × X → Y such that f x C x, x, x for all x ∈ X, and C is symmetric for each fixed one variable and is additive for fixed two variables see also 20 . The quartic functional equation 1.6 was introduced by Rassias 21 in 2000 and then in 2005 was employed by Park and Bae 22 and o...

متن کامل

Stability of generalized QCA-functional equation in P-Banach spaces

In  this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.

متن کامل

Stability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces

In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2011

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2011/536520